Educational material

Educational Case Studies for Monitoring and Control of
Discrete-Event Systems Using OPC UA and Cloud Applications

Erik Kucera *¥, Oto Haffner /, Peter Drahos and Jan Ciganek

Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava,
812 19 Bratislava, Slovakia; oto.haffner@stuba.sk (O.H.); peter.drahos@stuba.sk (P.D.); jan.ciganek@stuba.sk (J.C.)
* Correspondence: erik.kucera@stuba.sk

Abstract: The current trend in industry is the digitalisation of production processes using modern
information and communication technologies, a trend that falls under the fourth industrial revolution,
Industry 4.0. Applications that link the world of information technologies (IT) and operational
technologies (OT) are in particular demand. On the basis of information from practice, it can be
stated that there is a shortage of specialists in the labour market for the interconnection of PLCs with
information and communication technologies (cloud, web, mobile applications, etc.) in Slovakia and
neighbouring countries. However, this problem is beginning to affect other countries in Europe as well.
The main objective of the work was to prepare case studies suitable for educational purposes, which
would address the modelling and control of a virtual discrete-event system using a PLC program and
its subsequent interfacing to a cloud application. Within the scope of the work, three case studies were
prepared to demonstrate the control of discrete-event system using different programming systems
and their communication with the developed cloud applications. These applications are to be used
for data monitoring and emergency intervention of the discrete-event system. The characteristics of
the prepared case studies, which combine operational and informational technologies, predestines
them for use in the sphere of education of engineers for digitalisation of production processes. They
can also be helpful in research on the creation of digital twins, which represent a type of symmetry
between real and virtual systems.

Keywords: discrete-event system; Industry 4.0; digital factory; system control; cloud computing;
engineering education; OPC UA; Node-RED

1. Case Study No. 1: OpenPLC linked with Node-RED and Microsoft Azure

In the first case study (Figure 1), we would like to demonstrate the use of the freely
available open-source application system OpenPLC [28] instead of the traditional paid PLC
editors and runtimes. However, OpenPLC does not support the modern communication
standard OPC UA [29], but only the conventional Modbus protocol. Although OpenPLC
can communicate with Factory I/O using this protocol and implement control processes
using it, we also want to send data to the cloud and possibly provide it to other clients
via OPC UA. Therefore, we need a Node-RED intermediary (middleware), which is not
needed for control, but we also have it there for sharing data to the cloud via MQTT and
also via an OPC UA server to which we can connect a wide variety of clients. In our case,
we will be testing the OPC UA client UAExpert.

https://www.mdpi.com/article/?type=check_update&version=1
https://creativecommons.org/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4880-6746
https://orcid.org/0000-0003-4973-012X
https://orcid.org/0000-0003-2244-6559
https://orcid.org/0000-0003-2600-7035

2 of 25

, \‘ ’ \‘
’ Control ' |
: system : : :
l | | |

]]
) 1 “Node-RED
) = : Mo D B U S | Modbus client :
19 = > 10

' O] H]
} 10 | h |
1 : | g 0 :
| i 1 | [=opcua '
I Modbus | ! |
: server ! : OPCUA
Nemmemem / s

Virtual
production
system

&

Modbus
client

Microsoft
ure

I'd \
{ \
- |
! |
! |
! '
! '
! |
! |
! '
! '
! |
! |
! '
! '
J 1]

Figure 1. OpenPLC linked with Node-RED and Microsoft Azure

1.1. Discrete-Event System Specification And Behaviour

Discrete-event system could generally be defined as a system that can take on multiple
states, with transitions between states being event-driven. In this case, we consider a virtual
model of a discrete-event system in the form of a manufacturing system consisting of a
production belt and a machining centre (Figure 2).

The model consists of several parts that should dynamically respond to events that
occur in the system. At the input (emitter), pieces of material (semi-finished products)
are generated at certain time intervals and need to be transported to the machining centre.
Here, they are transformed by the machining process into products ready for dispatch to
customers. The material and products are moved by conveyor belts. We have six of them
(C1-C6). Seven retro-reflective sensors (R1-R7) ensure the functionality of the conveyors.
Using the emitter, we send the material onto the belt, where it is detected by the sensor
R1 and then the belt C1 is started. When the product is detected by sensor R3, the corner
belt C2 is triggered and then the belt C3, which takes the material to the machining centre.
Here it is processed into the final product, which is passed on to belt C4, which is triggered
when sensor R5 detects it. Subsequently, sensor R6 starts belts C5 and C6. The final product
is recorded by sensor R7, which should also provide a count of the number of finished
products. It is advisable to use an aligner to ensure that the product enters the machining
centre correctly. It is also necessary to ensure that there are no collisions between pieces of
material in the system and also between finished products.

Figure 3 shows an overall view of the virtual model of the production line.

3 0f 25

@ C3 C4 i c5
""" "R R6
3
2 C1 Cé6
g
g|------ _R2
El - = =
“5 |
I L
8 | EMITTER i
a - e o R7-

' REMOVER |

- e o

Figure 2. Scheme of production system.

Figure 3. Overall view of the virtual production line.

To create the above production line at Factory I/O, we needed a number of parts. They
will be listed in the following paragraphs.

1. Belt conveyor (Figure 4)—used for transporting light loads. They are available in
lengths of 2, 4 and 6 metres and in analogue (we can adjust the speed of the conveyor)
and digital versions;

2. Curved belt conveyor—used for transporting light loads and available in analogue
and digital versions;

3. Aligners—metal structures that are attached to the conveyor to prevent the product
from falling during transport. There are four types;

4. Chute conveyor—mostly used for dispatching items from conveyor belts;

4 of 25

5. Raw Material—metal or plastic material for the manufacturing of lids or bases. In our
case we understand it as a semi-finished product that needs to be machined into a
finished product;

6. Retroreflective Sensor and Reflector (Figure 5)—the sensor is used together with the
reflector, it detects the presence of an object on the belt.

7. Emitter (Figure 6)—it is the entry point of the production line, which ensures the
supply of production parts/raw materials to it. Raw materials are automatically
generated at time intervals according to the emitter settings.

8. Remover (Figure 7)—removes one or more items from the scene.

9. Machining Center—a robot used for the production of pedestals.

Figure 4. Belt conveyor.

Figure 6. Emitter.

50f25

Figure 7. Remover.

1.2. Control of Discrete-Event System

In order to control the discrete-event system, we use the open-source OpenPLC editor
and runtime in this case study. In OpenPLC, we use the Ladder logic. It is necessary to
define the variables that are required for the creation of the control program. The variables
will also be sent to the cloud later.

We use global RetroreflectiveSensor variables from 1 to 7 to sense the product on the
belt, based on which we turn the belt on or off, or count the number of semi-products or
products. The product values and subsequent calculations are handled through global vari-
ables Resultl to 3. Resultl counts how many semi-finished products have been dropped
on the belt. Result2 expresses how many finished end products there are and Result3
expresses how many products are currently in production. For running the production
conveyor belts, we use Conveyor variables 1 to 6. We also use various timers and mathe-
matical functions. We use timers to ensure that there are no collisions. And with sensors
we also count the time of the products on the belt to avoid further collisions again.

1.3. Communication between OpenPLC runtime and Node-RED Middleware

The communication takes place first between OpenPLC and Factory I1/0O (Figure 8).
The communication is provided using the Modbus protocol because OpenPLC does not
support more modern protocols (e.g., OPC UA). In this case, OpenPLC behaves as a
Modbus server and Factory I/O behaves as a Modbus client. Since we want to send the
data to the cloud or provide it to other clients using the OPC UA server, we need an
intermediary in the form of Node-RED. Thus, Node-RED is not needed for production
control itself, but we use it for the possibility of sharing data for the OPC UA server and to
the cloud. We communicate from Node-RED to Microsoft Azure cloud and back using the
MQTT communication protocol.

In order to properly connect the OpenPLC runtime with Node-RED, it is necessary to
understand how the Modbus protocol works and what is a server and what is a client in
our case. OpenPLC can even work as a server and a client at the same time, which we will
not actively use. Modbus offers four types of transmitted data.

* Discrete Input—A single bit (BOOL) that is used for binary input (e.g., from sensors).
In our case, these are addresses of type %IX. It can only be written by the Modbus server;

¢ Coil—A single bit (BOOL), which is mostly used for binary output. In our case it is
addresses of type %QX. It can be written not only by the server but also by the client;

* Input Register—A 16-bit read-only register. It is kind of like Discrete Input, except it
is not BOOL, but it is a 16-bit INT that can be unsigned or signed;

* Holding Register—A 16-bit register designed for both read and write. It is kind of
like Coil, except it is not a BOOL, but it is a 16-bit INT that can be unsigned or signed.

As mentioned, OpenPLC can act as both a Modbus client and a Modbus server.
In these modes it works simultaneously, but a different address is reserved for each. For the
OpenPLC server mode we are using, it has the following addresses (see Table 1).

6 of 25

OpenPLC runtime

OPC UA client UaExpert

Factory VO Node-RED

!
|
Connection to Modbus client |
gl
Connection to Modbus server I
|

Connection to Modbus client .|

Ll

T
|
|
|
|
|
|
|
|
|
|
|
|
|

Connection to Modbus server

Azure loT Central

Connection to OPC UAclient |

A

g
Connection to OPC UA server |
1

|
Publishing to MQTT broker

I

|
Subscribing to MQTT client
T

Y

Publishing MQTT messages - emergency control

A

Y Y Y

Figure 8. Sequence diagram for the first case study.

Table 1. Modbus server variables in OpenPLC engine [30].

I
I
I
I
I
I
I
I
I
I
I
I
I
I
»
Latf
I
I
i
I
I
I
I
I
I
I
I

PLC Modbus Data
Modbus Table Usage Address Data Address Size Range Access
Discrete Output Digital o o .
Coils Outputs %(QX0.0-%QX99.7 0-799 1 bit Oorl RW
Discrete Input Digital o 1x0.0-%1%99.7 0-799 1bit Oor1l R
Coils Inputs
Analog Input Analog ¢, 1yvo_o,1w1023 0-1023 l6bits 065535 R
Registers Input
Analog Output Analog o o .
Holding registers Outputs JoQW0-%QW1023 0-1023 16 bits 0-65,535 RW

Next, you need to set the Factory I/O on the Modbus client. We set the localhost where
we are running OpenPLC, which is 127.0.0.1. Next, we need to set the digital inputs to be
used on Coils. It would be more logical to use Inputs, but since Modbus client can only
write to Coils, we have to use Coils for the inputs. And last we need to set up I/O Points
and there we set the inputs and outputs according to how much space we need.

In Factory 1/0, the input and output variables need to be assigned correctly to the
Factory I/O components (Figure 9). The addresses must be identical to those in OpenPLC.

7 of 25

%) Factory 10

DRIVER

Sensors Actuators

Server: 127.0.0.1:502
Slave ID:1

Coil 8
Coil 9
Retroreflective S i Coil 10
Retroreflecti D i Coil 11
Retroreflecti i Coil 12

Retroreflective S i Coil 13

Retroreflective Sensor7 [J] Coi Coil 14 || () Machining Center 0 (Start)

Coil 15 FACTORY I/ (Pause)

Holding Reg 0 Coil 16 FACTORY)
Helding Reg 1 Coil 17
Holding Reg 2 Coil 18
Holding Reg 3 Coil 19
Helding Reg 4 Coil 20
Holding Reg 5 Coil 21
Holding Reg & Coil 22
Helding Reg 7 Coil 23

Input Reg 0

Input Reg 1

Input Reg 2

Input Reg 3

Input Reg 4

Input Reg 5

Input Reg &

Input Reg 7

Figure 9. Factory I/O—Modbus client.

The control program from OpenPLC editor needs to be loaded into OpenPLC runtime
and run. Figure 10 shows how values are read from the OpenPLC runtime and how
OpenPLC connects to Node-RED using Modbus protocol. The ability to communicate via
Modbus can be obtained by installing the node-red-contrib-modbus 5.14.1 library.

We read inputs (from sensors) via the node called Modbus Read -%QX0.0-7 and
read outputs (actuators) via Modbus Read - %QX0.7+ node. We start with inputs from
address 0, i.e., %QX0.0. The outputs start from address %QX1.0. The Modbus node always
reads a whole byte, which is alright in this case since we have exactly eight input variables.
The variables are of type BOOL (true/false). Modbus Read works as a client and we need
to connect it to the server. We will connect it to a server that we have called OpenPLC local
and set the corresponding address 127.0.0.1 and port 502. Next, it is needed to specify that
we are going to read coils, which is a standard Modbus protocol command (FC1: Read Coil
Status). In the case of our input variables, we set the address to 0, since we are reading from
%QX0.0 (so in the case of %QX1.0, it would be 8). We set the quantity to 1, since we are
reading 1 byte. We set the poll rate to 2 s, which means that the value is read every 2 s.

We used a similar procedure on Modbus Read - %QX0.7+, where we read output
variables from PLC address %QX1.0 and our Modbus address is 8.

In PLC program there are also 3 values of INT type, which are stored in registers
that have different addresses than the coils (these are of BOOL type). These are, for ex-
ample, the number of finalised products. These values are read using the Modbus Read
Holding node.

8 of 25

Function: Medbus to OPC UA namespace

O wsiting ...

©

Reading coil status (reading outputs) }

Function: Modbus to OPC UA namespace

O waiting

@ s=ssion schive

{_ﬁ, Reading coil status (reading outputs) Function: Medbus to OPC UA namespace

O waiting

Edit Modbus-Read node Edit Modbus-Read node = Edit modbus-client node

Delete Cancel Delete ‘ Cancel Update
£+ Properties E @ £+ Properties ‘ &% B
‘ Settings ‘ ‘ Optionals ‘ Name ‘ OpenPLC local
Name | Hodous Read - %@x0.0-7 | U [ree v]
Topic ‘ Topic ‘

- Host i127v0.0v1
Unit-id | |

) Port 1502

FC ‘ FC 1: Read Coil Status v

‘ TCP Type i DEFAULT v ‘
Address ‘ 0 ‘
Quantty |1 | Uni-id K |
Fellbaic ‘ 2 < H second(s) hd Timeout (ms) [1000 ‘
O Delay on start | s Reconnect on timeout
@ Delay Time ‘ 10 ‘ Reconnect

timeout (ms) ‘ 2000 |

s =
server | OpenPLC sl 14 HEUnitid's in paralel

#log states changes

28 Queue Logging &
288 Queue commands
Queue delay (ms) ‘ 1 ‘

Figure 10. Node-RED as Modbus client.

1.4. OPC UA Server and Client

Since we want to offer the values from the production line to other users who may
have OPC UA clients, it was necessary to implement an OPC UA server in Node-RED to
provide these data.

As already mentioned, OpenPLC runtime cannot function as an OPC UA server, as it
is a free open-source tool. This is the domain of more advanced PLC solutions such as

9 of 25

CODESYS or Siemens TIA Portal. Therefore, the OPC UA server will be created using
Node-RED, to which the data arrive from OpenPLC runtime via Modbus protocol.

Library node-red-contrib-opcua 0.2.256 was used to create OPC UA server.

To create a server, it is necessary to use the OPC UA server node, where the port
(in our case 53,880) and optionally its name are set. We use the default name. It is also
possible to set authentication options, as OPC UA communication standard supports
multiple security profiles. We use anonymous access for clarity (and since we are running
on localhost).

The creation of the server is also related to the creation of address space, i.e., variables
that will initially be empty or have a predefined value, and later we will fill these variables
with values that OpenPLC runtime sends using Modbus protocol.

To keep our inputs and outputs clearly separated in the address space, we have created
folders FIOOutputs and FIOInputs in it.

It should be noted that the individual directives that we send to the OPC UA server
node are sent using the Inject node type. Thus, these directives need to be set to execute
automatically when the Node-RED program is started, and it is logical that the timing
needs to be set so that the directives that create the folders are executed first, and then
the variables are created. This will successfully create an OPC UA server with the desired
address space.

We will use the following directives (but there are several supported): addFolder,
setFolder and addVariable.

The directives are bound to the msg.payload of messages in Node-RED and the content
itself to the msg.topic of messages. This can be seen in Figure 11, which shows the creation
of the FIOOutputs folder. In msg.payload there is a command to add the folder and in
msg.topic there is the defined namespace and folder name.

Edit inject node

| Delete Cancel m

& GETED | # Properties BIBE

‘ Modbus to OPC UA exarr

¥ Name AddFolder FIOOutputs ‘

E h B i
y - AddFolder FIOOutputs * '+ D,
debug ‘ H A\ a
= \ A
) | AddFolder FiOlnputs * | - E‘ msg. payload = v {} {"opcuaCommand""addFolder’} e [x]
[complete N\
. | SetFolder FIOOutputs * . N\ _ o
s b ! . = mso. topic =+ % ns=1s=FI0Outputs =
] 7
sk o Resultt * [~
- L ’
‘, dsite |~ Resuit2*
£ linkesll)] » e
@ linkout | B
= RetrorefiectiveSensort
mmmmm t | =
RetrorefiectiveSensor2
¥] @ RefrorefisctiveSensor3 *
& function > [RetrorefiectiveSensord *
[L [-
=) running
4 BT RetrorefisctiveSensors *
% P ! y
4 el |- RetrorefiectiveSensor7 * ¢
T P 1

Conveyort *

T C Comveyor2* "
- : =y
| Cconveyora ®

T |- Conveyors *

Inject once after [5.0 seconds, then

% =7 conveyors *
network 1 5 CRepeat none v

/
robot 1 [+

3
3
i

>

Figure 11. Creating OPC UA server and its address space in Node-RED.

Adding the RetroreflectiveSensor] variable would look like this, and it is obvious that
the variable’s data type is also set:

10 of 25

® msg.payload: {’opcuaCommand‘‘:’’addVariable’’};
®* msg.topic: mns=1;s=RetroreflectiveSensorl;datatype=Boolean.

In order to be able to populate variables with data, we needed to create a custom
function in JavaScript, since in Node-RED it is not necessary to use only the built-in nodes,
it is also possible to create your own.

Notice in Figure 10 the node named Function: Modbus to OPC UA namespace,
i.e., the node representing our own function. Specifically, we will describe the node that is
connected to the node Modbus Read- %QX0.0-7. The Modbus Read- %QXO0.0-7 node sends
an array of 8 values (of type BOOL) to the Function: Modbus to OPC UA namespace node.
Figure 12 shows the contents of the node. For each value received from Modbus, we have
pre-prepared an empty variable (msg0, msg1, msg2,...) where we store the elements of the
array. In their payload we store the value itself (of type BOOL), but the more interesting
part is msg.topic. Here, according to the documentation of the OPC UA client installed in
Node-RED, we need to define which variable in the OPC UA address space the variable
will go to. Thus, we have defined the namespace ID (abbreviated ns), the variable name
and the data type that matches the input variables obtained from Modbus server.

Edit function node

Delete Cancel

£ Properties 8B =E
W Mame Function: Modbus to OPC UA namespace & -
£ Setup On Start On Message On Stop

[8] is %
1] is %

1

2

3

4 msg@ = {};

5 msgl.payload = msg.payload[8];

6 msg@.topic = “"ns=1;s=RetroreflectiveSensorl;datatype=Boolean”;
7

8 msgl = {};

9 msgl.paylead = msg.payload[1];
18 msgl.topic = “ns=1;s=RetroreflectiveSensor?;datatype=Boolean”;
11

12 msg2 = {};
13 msg2.paylead = msg.payload[2];

E
1;s=RetroreflectiveSensor3;datatype=Boolean”;

14 msg2.topic = "n

15

16 msg3 = {};

17 msg3.payload = msg.payload[3];

18 msg3.topic = “ns=1;s=RetroreflectiveSensord;datatype=Boolean”;
19

280 msgd = {};

21 msgd.payload = msg.payload[4];
22 msgd.topic = “ns=1;s=RetroreflectiveSensors;datatype=Boolean”;
23

24 msg5 = {};
25 msg5h.payload = ms
26 msgS.topic = “ns=

.pavload[5];
;==RetroreflectivesSensoré;datatype=Boolean";

28 msgb = {};

29 msg6.payload = msg.payload[5];
38 msgh.topic = “ns=1;s=RetroreflectiveSensor7;datatype=Boolean”;
31

33
34 return [msg@,msgl,msgl,msg3,msg4,msg5,msg6];

Figure 12. Function for filling OPC UA server with values obtained using Modbus protocol from
OpenPLC—Function: Modbus to OPC UA namespace.

Then the Function: Modbus to OPC UA namespace node is connected to OPC UA client
node, which stores the values in our OPC UA server.

We can also provide values from our OPC UA server to clients other than the client
installed in Node-RED. Theoretically, this could be a client that does not have to run only
on a computer, but also on a smartphone, tablet, in the cloud, etc.

11 of 25

1.5. Application in Microsoft Azure Cloud

One of the main objectives of the work was the implementation of a cloud application,
which could be used to monitor discrete-event production system—to monitor the values
of selected variables, to visualize the data appropriately, to process them efficiently and,
if necessary, to intervene in the system.

At the beginning, it was necessary to determine what should be in the cloud applica-
tion. The functional requirements were then determined:

e Display of read values and action buttons in a dashboard;

¢ Communication with Node-RED using the MQTT protocol;

¢ Display of the number of manufactured (final) products handed over for dispatch;

e Displaying the number of semi-finished products (pieces of raw material) that have
entered production;

¢ Displaying the number of semi-finished products / finished products that are currently
on the conveyors (or in the system as such);

* Graphical representation of the current temperature in the production hall;

* Simple processing of the current temperature values in the production hall in order to
raise an alarm if the temperature rises above a certain value;

e DPossibility of emergency intervention in the system - suspension and start-up of the
production line.

The characteristics defined above are intended to describe what the application system
(cloud application) being created will be able to accomplish. However, it is necessary
to identify a second set of requirements that will not address the functionalities of the
application. These will be the so-called qualitative, i.e., non-functional requirements:

* The cloud application should have a simple and intuitive user interface;

* Individual displayed variables should be part of a suitable object model, assuming
appropriate use of Microsoft Azure cloud components;

* The application should allow for easy extensibility by displaying additional variables,
or the possibility of adding additional production lines, each with its own panel;

¢ Interms of language internationalisation, the application should use English.

After the design, it was necessary to move on to the actual implementation. The most
effective way is to use Paa$S (Platform as a Service) services, i.e., to use ready developer tools
to create your own cloud applications. The original plan was to bundle together multiple
Paa$ services, such as Azure IoT Hub for monitoring and connecting devices [31], Power
BI for data visualisation [32], Azure Stream Analytics for data analytics [33], and Azure
Functions for event callbacks [34], for example. During the course of the work, it was deter-
mined that the most effective solution would be to use the relatively new comprehensive
aPaaS (application Platform as a Service) service Azure IoT Central [35], which combines
the aforementioned functionalities.

Microsoft Azure IoT Central is used to connect and manage devices on a large scale
and provides reliable data for business statistics, so it can be classified as an enterprise
resource planning (ERP) system. It incorporates multiple PaaS services to create easily
configurable, comprehensive and secure IoT solutions. A web-based user interface allows
you to quickly connect devices, monitor device status, create rules, and manage millions of
devices and their data throughout their lifecycle [35].

Azure IoT Central works similarly to Azure IoT Hub based on device twins, with each
device based on a template. Device template is a so-called blueprint that defines the
characteristics and behaviour of a device type. We then connect these devices to our
application. For example, we can define the telemetry that a device sends so that IoT
Central can create visualisations that use the right physical units and data types.

The device template we created is called template-factoryio. It contains the device
models that we define for integration with our application. Each model has a unique ID
and we also implement capabilities or semantic type for each model. The semantic type
enables IoT Central, which can make some kind of assumption about how to treat the value.

12 of 25

The capabilities we can assign to our models are:

* properties—data fields that represent the state of the device;
o telemetry—telemetry (measurements) from sensors;
* command—methods that users can execute on the device (e.g., control commands).

The structure of our device named conveyor-system1 is as follows, where the first
entry is the system name and the second entry is the capability type: turnOn (command),
turnOff (command), produced (telemetry), entered (telemetry), on_line (telemetry), temperature
(telemetry), location (property).

The device connection is handled using SAS (Shared access signature) authentication.
We connect our device model in the cloud to Node-RED using scope ID, Device ID and
Primary key data.

We can then view the data that our cloud application receives. Notice Figure 13, where
we can see three values that our cloud is receiving—Totally produced, Entered on line and
Currently on line. Totally produced means how many products have been produced and
submitted for shipment. Entered on line is the number of semi-finished products (pieces
of raw material) placed on the conveyor belt. Currently on line is the number of actual
semi-finished and finished products on the belt. There is also a map that can show where a
given production is taking place. Next to it is a graph that shows us the air temperature
in that factory. Since our production line is not real, we just simulate the temperature by
generating random values in Node-RED in the range of 18 to 25. We can also send a signal
from Node-RED during the application run that the air temperature is 100 degrees Celsius.
In this case, we have implemented an event (alarm) on the Azure IoT Central side, which
ensures that an email is sent to the authorised personnel. This demonstrates the basic
form of data processing and evaluation based upon which the event is executed. Events
in Azure IoT Central can be selected from predefined types or custom functions can be
programmed using Azure Functions (serverless architecture).

e = Go to dashboard catalog

Totally produced Ve Entered on line Ve Currently on line Ve turnOn turnOff
8(0) 9(0) 1(0) — —
now now now > >
Map (property) Ve Line chart o
%,
r;.g + ® Temperature
% o7
Ci .
G {
o

24
Technolégif Stu

Fakulta Informatiky
A Informaéngch
22
r‘

204

Ei
:
io
Mlinelbs Anlin

ulta
Matematiky, Fyziky
A Informatiky Uk

Slovenska Technickd 184

L . . T
Univerzig 09:25'30 A 00:26:00 AM 09:26:30 AM
21042032 21042022

©2020 TomiTom Improve this map

Figure 13. Dashboard in Azure IoT Central.

We will briefly describe how the data are sent in Node-RED, using the example of
the generation of temperature values (Figure 14). We start by using the timestamp node,
which provides us with the cyclic execution of a given program flow. Next, we use the
random node (named Temperature in Figure 14), which generates random integers from

13 of 25

18 to 25. This node goes into its own temperature function, where we insert an identifier
into the msg.payload of our message that is identical to the identifier of the temperature
variable in the cloud on the given device model (twin). We also have an inject 100 node
ready, which we can manually push to send a temperature value of 100 degrees Celsius to
simulate a fire on the production floor. Finally, the whole branch goes into the Azure IoT
Central node where the device ID on the cloud and the access key is defined. In addition to
this, the communication protocol is also defined here, in our case it is MQTT. One can also
communicate over AMQP or HTTPS. We use the azure-iot-central 1.6.0 library.

(]
timestamp Temperature temperature msg.payload

100

Figure 14. Node-RED data sending flow (air temperature).

We can also intervene in our virtual production system using the cloud application.
We demonstrated this by implementing the ability to emergency pause and start the line.
In Figure 13, we can see the buttons in the upper right corner that provide this.

First of all, it is needed to configure in Azure IoT Central node what commands
this node listens for. In our case, these will be turnOff and turnOn. Another important
element is the JavaScript functions that will respond to these commands from the cloud
application (Figure 15). These functions must be registered in the context of our Node-
RED flow (flow context). This is carried out (in the case of line suspend) using command
flow.set (’turn0ff’,turn0ff) ;. The Azure IoT Central node takes care of the rest. Af-
ter the JavaScript functions, we have other nodes connected to provide us with pause or
start links. The command is sent to OpenPLC runtime using Modbus protocol, so we use
nodes of type Modbus Write.

]
turnOn if Modbus Write - turnOn =72
timestamp * 0 active

furmQF if Modbus Write - turnOff = ::
0 sctive

FEpsa2e ARy aesP SRR Syor ek,

2. Case Study No. 2: CODESYS Linked with Node-RED and Microsoft Azure

In the second case study (Figure 16), instead of using a free and open-source PLC
editor, we decided to use a comprehensive automation solution called CODESYS, which
provides us with a connection to Factory I/O using the modern OPC UA communication
standard. OPC UA server will run through CODESYS runtime and Factory I/O will act as
OPC UA client. For control purposes, we do not need an intermediary (middleware) in
the form of Node-RED. However, we will use Node-RED for capturing data and sending
it to the cloud and it will also be used to provide emergency stop and start of production
line that can be made by the user through the cloud application. The cloud application will
again be implemented using Microsoft Azure and the communication will be secured by
MQTT protocol. CODESYS can be used for academic purposes, but the limitation is that
the runtime can only run continuously for 1 h in free mode, which would be very limiting
in production.

The specification and behaviour of discrete-event system is the same as in the first
case study:.

14 of 25

s S pos===< =~
(Control \ | \
]] 1
| system 1 : 0
| i | |
(@ | | ’
I]
| CODESYS | OPC UA : !
] | £ S
: : - > : Node-red :
0 0 ! '
() ! L
N) - !
| server] !]
\) !)
N -7 A P P
OPC UA MQTT

== =N
' Virtual :
: production | /
1 system :
: : ml Microsoft
| " Hl Azure
! |
¥y O
: ‘ |
H]

]
\\ ------ ',

Figure 16. CODESYS linked with Node-RED and Microsoft Azure.

2.1. Control of Discrete-Event System

As in the first case study, we need to control discrete-event system. In our first case
study, we used open-source and runtime OpenPLC. Now it is replaced by CODESYS. We
use the Structured text language to declare variables. The control program is written by
Ladder diagram.

The main variables in the control program are the same as in the first case study.
However we have also added additional variables that are related to the runtime mea-
surement of the control system. In addition, compared to the first case study, we have the
CYCLE_TIME block, which is of type “Function module”. We inserted this CYCLE_TIME
using the external library OSCAT_BASIC version 3.3.4.0. We use it to measure how long
the control system has been running for us.

2.2. Communication

The most important aspect of communication (Figure 17) in this case is the communi-
cation between CODESYS and Factory 1/0, as it provides the control process. The com-
munication is provided by the modern OPC UA protocol. CODESYS will now behave as
OPC UA server and Factory I/0 will behave as OPC UA client. Thanks to the existence of
OPC UA server, we can view the variables in any OPC UA client. We will use Node-RED
again in this case to share data to the cloud, but it is not needed for system control. We will
communicate with the cloud via MQTT protocol.

15 of 25

Codesys runtime Factory VO Node-RED (local) OPC UA client UaExpert Node-RED (cloud)
| I 1

Connection to OPC UAclient _ |

4

Connection to OPC UA client

>
l

—_L_N

Connection to OPC UA client
I
[
Connection to OPC UA client

Connection to OPC UA server
T

Y

Y

A

Publishing to MQTT broker
|

Subscribing to MQTT client
T

A 4

A

I
Publishing MQTT messages - emergency control

T
|
|
|
|
|
|
|
|

Connection to OPC UA server

A

e Wiy Sl

Figure 17. Sequence diagram for second case study.

2.3. OPC UA Server in CODESYS

CODESYS is relatively easy to work with. It is important to note that we need to
name the variables so that Factory I/O can easily identify them and filter out the ones
it needs. The entire OPC UA address space also contains a large number of different
configuration and status variables that come with the CODESYS runtime. That is why
all our useful variables have FIO prefix. We do this in order to be able to recognize our
variables and make them easier to read, and most importantly, to be able to retrieve them
easily in Factory I/0O. In the Symbol configuration of the CODESYS project we select these
variables, which actually specifies that they will be offered by the OPC UA server. Then
we initialize CODESYS Control Win PLC, which is a softPLC running under Windows.
Then, in the CODESYS project, we connect to this runtime and load a program into it.
The connection is made by scanning the network and selecting the control unit, which can
be the aforementioned softPLC or also a classic hardware PLC unit.

In Symbol configuration, we can click on our entire PLC_PRG program to mark all
variables (Figure 18). In this way, all the variables we use are available in the OPC UA
server. We then build and run the program.

In Factory I/O we open our scene and set the OPC Client DA/UA as driver in
the configuration. We will specify opc.tcp://localhost: 4840 as the server and set “FIO” as
the variable filter, this will obtain our variables from the OPC UA address space as we
mentioned above. We assign all the variables and the communication between Factory I/O
and CODESYS is implemented (Figure 19).

16 of 25

[Device i) Lbrary Manager @ PLC_PRG B2 Symbol Configuration X
[N View ~ | [#¥|Build [z Settings ~ Tools ~
Changed symbol configuration will be transferred with the next download or online change

Symbols Access Rights Maximal Attribute Type Members Comment

* [5 Constants

#-[T] [E] 1oConfig_Globals

= [[E][Prc_Prs \
[¥] # CYCLE_TIME_O » » OSCAT_BASIC.CYCLE_TIME
FIO_I_RetroreflectiveSensorl » "» BOOL
[¥] # FIO_I_RetroreflectiveSensor2 “» " BOOL
[¥| # FIO_I_RetroreflectiveSensor3 9 "» BOOL
[¥| # FIO_I_RetroreflectiveSensord £ " BOOL
FIO_I_RetroreflectiveSensor5 » " BOOL
[/] # FIO_I_RetroreflectiveSensor6 “p "9 BOOL
[¥| # FIO_I_RetroreflectiveSensor? » " BOOL
[/] # FIO_O_Conveyorl » » BOOL
FIO_O_Conveyor2 “» " BOOL
FIO_O_Conveyor3 » " BOOL
[¥] # FIO_O_Conveyord » "» BOOL
[7] # FIO_O_ConveyorS » "» BOOL
[¥| % FI0_O_Conveyor6 “» " BOOL
FIO_O_Result1 "y “» INT
[¥] # FIO_O_Result2 W " INT
[¥] # FIO_O_Result3 » » INT
[/ # Factoryio_start » "» BOOL
Factoryio_stop “» » BOOL
¥ # m10 k] " BOOL
[¥] # M1000 » " BOOL
[¥] # SRo » " SR
L ! » " BOOL
[¥] ¢ TOF_0 » " TOF
[¥] & TOF_1) "» TOF
[¥] # ct_last » » TIME
ct_max " " TIME

Figure 18. Symbol configuration.

CONFIGURATION
apeitopi/flocalhost4840 (18)
Host Name
FI0_Factoryio_start

Advantech USB 4704 & USB 4750
FIO_Factoryio_stop

Allen-Bradley Logix5000 Retror o roreflectiveSensor]

BROWSE SERVERS S

e roreflectiveSensor2

Allen-Bradley Micro800 Retrorefie roreflectiveSensor3
OPC Server

roreflectiveSensord

Allen-Bradley MicroLogi N
n-Bradley MicroLogix q //localhost:A840 ~ Ottt i roreflectiveSensor§

Allen-Bradley SLC 5/05 Retrorefle roreflectiveSensort
roreflectiveSensor7

Automgen Server FI0_O_Conveyor1

FIO_O_Conveyor2
Control I/0 BROWSE
FIO_O_Conveyor3
MHJ Limit FIO_O_Conveyord
FIO_O_ConveyorS
Modbus TOP/IP Clnt 2] P

FIO_O_Result1

Medbus TCP/IP Server Filter names that start with:
FI0_O_Result2

OPC Client DA/UA e FI0_0 Result3
Siemens LOGO! Filter names that contain:

FIO
Siemens 57-200/300/400

Siemens $7-1200/1500

Siemens S7-PLCSIM DEFAULT

Figure 19. OPC UA Client Factory I/O.

2.4. Connection between CODESY'S and Local Node-RED

After creating and running OPC UA server using CODESYS, we want to obtain the
data using OPC UA to Node-RED, which runs on localhost (like OPC UA server). This will
be provided by OPC UA Client node, where we set the same address as in the previous
text (opc.tcp:/ /localhost:4840). This way Node-RED acts as the OPC UA client. We accept
all the variables we want to work with (Figure 20). On the left in Figure 20, we see nodes of
type Inject querying each variable every second, defining the variable name in the msg.topic
of the given message. The variable name is quite complex in the CODESZS OPC UA

17 of 25

address space. We can see the names, and also the data, clearly in any OPC UA client,
for example. There we can read that the ID of one of the variables is ns=4;s= | var | CODESYS
Control Win V3 x64.Application.PLC_PRG.FIO_I_RetroreflectiveSensor]l and based on this ID
we can query the variable in Node-RED.

Result! v
Result? v

Result3 u

RetroreflectiveSensort &
RetroreflectiveSensor2 v
RetroreflectiveSensor3 o
RetroreflectiveSensord u

Retroreflective Sensord u

Retroreflective Sensor? v

Conveyor! v
Conveyor2 v
Conveyors v
Conveyord v
Conveyord v

Conveyor§ v

Systime v

Figure 20. Local Node-RED—OPC UA client.

It should be clarified the reason for running Node-RED on localhost. Similar to the
previous case study, we want to use the cloud for discrete-event system monitoring and
emergency intervention. Since our OPC UA server is running locally and we do not have a
public (static) IP address, we will use localhost Node-RED to send data to the cloud and
receive data from the cloud.

We will send our variables to the cloud using MQTT protocol. We will use MQTT-in
node (acting as a subscriber) and MQTT-out node (acting as a publisher). These nodes
will connect to the broker (server) that is implemented in the cloud. Specifically, this is
the Aedes MQTT broker [36]. We will read our variables in the local Node-RED using
OPC UA client, from which we extract individual data (variables) using our own Fil-
ter functions and send them to the cloud using MQTT. When sending data via MQTT,
we need to set the corresponding MQTT topic for it. For example, for us it looks like
inputs/FIO_I_RetroreflectiveSensorl.

2.5. Node-RED Dashboard in Microsoft Azure Cloud

In the first case study, we implemented a dashboard for system monitoring and
emergency intervention using Azure IoT Central aPaaS service. In the second case study,
we opted for a different approach. Node-RED also provides the possibility of implementing
a dashboard, so as suitable option turned out to be to deploy Node-RED also in the cloud
and create a dashboard using it.

18 of 25

Deploying Node-RED to the cloud is relatively easy, as it is actually an application
running on the Node.JS runtime. So we used a virtual machine, specifically the Azure
Virtual Machine laaS service [37]. Azure Virtual Machine is one of several types of scalable
on-demand compute resources that Azure offers. Before we create one, we need to think
about a few things such as the application name, where the resources are stored, virtual
machine size, operating memory, maximum number of virtual machines, operating system,
configuration, and related resources. Further, it gives us the flexibility of virtualisation
without having to buy and maintain the physical hardware on which it runs. We used a
Linux-based operating system, specifically Ubuntu Server 20.04 (Focal).

Thus, we send data from the local Node-RED to the Node-RED in the cloud using the
MQTT protocol. Here, we read the data, i.e., receive it using the MQTT protocol, and then
display it in the dashboard. We use the node-reddashboard 3.1.6 library and node-red-contrib-
ui-led 0.4.11 to display the data in the dashboard, since the nodes that allow us to do this
are not part of the base installation and need to be installed separately. Table 2 gives us a
more detailed description of Figure 21, where we can display data in the dashboard using
these nodes.

Figure 21. Node-RED in cloud.

19 of 25

Table 2. Variables in local Node-RED.

Node Type Node Name
led 51-57,C1-Cé
gauge Totally produced, Entered on line, Curently on line
text Systime
chart Temperature
button Turn On/Off
date picker date

Our final dashboard is shown in Figure 22. It is important to note that we can not
only monitor the variables, but again we can also intervene in the production process in
an emergency.

Production system - Factory 10

Totally produced

Temperature

Figure 22. Dashboard in Node-RED (cloud).

3. Case Study No. 3: OpenPLC Linked with Node-RED Acting as a Software
IIoT Gateway

In the third case study (Figure 23), we will again use the free OpenPLC tool. However,
let us imagine a situation where we want to use OpenPLC to control a system that can be
remote (accessible via a local network or Internet). OpenPLC only supports the old protocol
Modbus, but we want to access this remote system via the modern OPC UA standard for
security reasons. Network elements are used for this - for example IIoT gateways, which,
in simple terms, provide translation of Modbus messages into the OPC UA address space
(and vice versa). In our case study, we will show a software implementation of an IloT
gateway using Node-RED, which can be implemented, for example, using a Raspberry Pi
microcomputer. Thus, Node-RED will act as an OPC UA server and at the same time as a
Modbus client. Factory I/O will be the OPC UA client and OpenPLC runtime will be the
Modbus server.

4 N d < jeececcc=- .
{ Control : { : { Virtual
: system ! :] 1 production :
! ! | system
])] ' H
! |] ' 1 1
! 1} \Node-RED]
Y | _ MODBUS | ciuecicn | OPCUA | / |
! Q) [> | 1 = > H
1 | i ! ! |
! : | (D) ! : :
])] “HOPC) 1
I Modb | |
U aorver » Copcua | | oPcuA i
! server ! [| client !
| Y ’ ST \ J

Figure 23. OpenPLC linked with Node-RED acting as a software IloT gateway.

20 of 25

Of course, such communication cannot be considered as real-time, so such a solution
is only suitable for non-time-critical systems (e.g., in a smart home). The control of systems
over a network, where substantial delays can occur, is the subject of a special area of control
theory focusing on networked control.

For simplicity and greater clarity, we have chosen only a fragment of the production
event system for demonstration (Figure 24). It is a simple system that contains parts from
both case studies. In the case study, we will use OpenPLC, which will communicate using
Modbus. Then the Modbus data will be converted using Node-RED to communicate via
OPC UA to Factory 1/0.

Figure 24. Fragment of discrete-event system.

3.1. Control of Discrete-Event System

As in the previous case studies, we will need to control discrete-event system. In this
third case study, we use open-source editor and runtime OpenPLC. In OpenPLC, we again
use Ladder logic. However, in this case study we use only four global variables named
Sensor_1 and Sensor_2, Conveyor_1 and Conveyor_2.

Sensor_1 checks if the product is on the conveyor belt, based on which we switch on
the Conveyor_1 belt. Sensor_2 stops Conveyor_1 by sensing the product on the belt. We
have the Conveyor_2 variable for the purpose of checking if we are communicating, so it is
set to TRUE by default. So we can think of the whole process as moving the product from
point A to point B, where it stops.

3.2. Communication

The communication will be between OpenPLC and Factory I/O. However, we want to
communicate with Factory I/O using the modern OPC UA protocol. As we already know
from previous case studies that OpenPLC cannot communicate with modern protocols,
so we will need a so called intermediary (middleware). The intermediary in this case will
be Node-RED. OpenPLC will communicate with Node-RED using the Modbus protocol
and Node-RED will further communicate with Factory I/O using the OPC UA protocol.
Node-RED will provide us with the encapsulation of Modbus data to OPC UA address
space as we mentioned above.

3.3. Creation of OPC UA Server in Node-RED

In the local Node-RED, we first need to create an OPC UA server using the OPC
UA server node (Figure 25) and the procedure already mentioned in the previous sec-
tion. At the beginning, we create folders in the address space in order to have separate
inputs and outputs in the address space. Next, we create 4 variables. These variables are
the same as in OpenPLC and we named them fio_Sensor_1_Q1-0, fio_Sensor_2_Q1-1,
fio_Conveyor_1_Q0-0 and fio_Conveyor_2_Q0-1.

21 of 25

@
AddFolder FIOOuiputs *

@
AddFolder FIQInputs *

@
SetFolder FIOCutputs *

]
fio_Sensor_i1_Q1-07

. \
fio_Sensor 2 Q117 @ —07—M— 8 ———

@
SetFolder FICInputs *

]
fio_Conveyor_1_Q0-0 7

L
fio_Conveyor_2 Q0-1 7

Figure 25. OPC UA server.

3.4. Communication from OpenPLC to Factory 1/O

First we need to describe how the communication from OpenPLC runtime towards
Factory I/O works. From OpenPLC, Factory I/O needs to read the values of the outputs.
Therefore, we need to read the outputs using the Modbus Read - %QX0.0-7 node, since the
PLC program in OpenPLC evaluates whether a given Conveyor should be started or not.
We connect this Modbus Read to our server, which we have called OpenPLC local, where we
have again (as in the first case study) set the corresponding address 127.0.0.1 with port 502.
Next, we again set the quantity to 1 (because we are reading 1 byte), the address to 0 (the
outputs are available from address %QX0.0). This is a reading, so we set the function to FC:
Read Coil Status.

Once we have read the values, we need to obtain them to OPC UA server so that
Factory I/O can read them from it. Using the Conveyors: Modbus to OPC UA namespace
custom function (Figure 26), we assign a specific msg.topic to the Modbus messages to
ensure that the Modbus data are placed in the correct variable in the OPC UA address
space. Sending the data to the OPC UA server is handled by the OPC UA client node.

The nodes at the bottom of Figure 26 are for program testing purposes only and
specifically return the current value of the inputs from the Modbus server (addresses
%QX1.0 and %QX1.1).

In Factory 1/0O, the input and output variables of the address space of the OPC UA
server must be correctly assigned to the Factory I/O components (Figure 27).

. magpoyons |

Reading coil sfatus (reading outputs)

]
2/ Modbus Read - %QX1.0-7 — —_———— Modbus Response 3

\ﬂ

Figure 26. Communication from OpenPLC to Factory I/O.

22 of 25

Server: Node-RED OPCUA (UA)
(4)

fio_Conveyor_1_Q0-0

fio_Conveyor_2_0Q0-1 Conveyor_2

Sensor_1 I fio_Sensor_1_0Q1-0

Sensor_2 fio_Sensor_2_Q1-1

Figure 27. Factory I/ O—connection.

3.5. Communication from Factory 1/O to OpenPLC

In this subsection, we will show how the communication from Factory I/O towards the
OpenPLC runtime takes place. Factory I/O needs to send values to the OpenPLC runtime
from inputs, i.e., from sensors that detect the presence of a product. For this we need the
variables fio_Sensor_1_Q1-0 and fio_Sensor_2_Q1-1, which we will send to OpenPLC.
In Figure 28 we see on t