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• Introduction

• Fundamental equations

• Thermodynamics of gases

• Speed of sound 

• Isentropic flow

• Nozzle fluid flow

1. Fluid Flow and Thermodynamics
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• Fluid flow: 
– naturally three dimensional, but in some special cases can be 

considered as one dimensional or quasi-one dimension 

– fluid can be considered according to:

• steady-state VS transient

• turbulent VS laminar

• inviscid VS viscous fluid  

1. Fluid Flow and Thermodynamics
Introduction
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quasi-one dimension 
fluid flow

inlet outlet
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• System or Control Mass (CM):

– is a collection of matter of fixed identity

– it may be considered enclosed by an invisible, massless, 
flexible surface through which no matter can pass

– the boundary of the system may change position, size, 
and shape

– is also called control mass

Introduction
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1. Fluid Flow and Thermodynamics

moving of control 
mass

inlet outlet
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• Control Volume (CV):

– is arbitrary volume fixed to the coordinate system 
(stationary or moving)

– bounded by control surface (CS) through which fluid 
may pass, CV can has differential or finite size

Introduction

6

1. Fluid Flow and Thermodynamics

differential CV finite CV
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1. Fluid Flow and Thermodynamics

• There are 4 fundamental equations, which must 
be considered: 

– Continuity equation

– Momentum equation

– Energy equation

– Entropy equation

Fundamental equations
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1. Fluid Flow and Thermodynamics

• Continuity equation
Fundamental equations
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• Continuity equation
Fundamental equations
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1. Fluid Flow and Thermodynamics

• Continuity equation
Fundamental equations
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1. Fluid Flow and Thermodynamics

• Continuity equation
Fundamental equations
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• Continuity equation
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1. Fluid Flow and Thermodynamics

• Momentum equation
Fundamental equations
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1. Fluid Flow and Thermodynamics

• Momentum equation
Fundamental equations
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1. Fluid Flow and Thermodynamics
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1. Fluid Flow and Thermodynamics

• Momentum equation
Fundamental equations
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1. Fluid Flow and Thermodynamics

• Energy equation
Fundamental equations
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– pressure work

Thermodynamics of gases
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• reversible process

– added heat – closed system

– reversible process

– internal energy

– pressure work

Thermodynamics of gases
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• reversible process

– added heat – closed system

– reversible process

– internal energy

– pressure work

Thermodynamics of gases
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• reversible process

– added heat – closed system

– reversible process

– internal energy

– pressure work

Thermodynamics of gases
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1. Fluid Flow and Thermodynamics

• physical mechanism:

– sound propagation in gas is based on molecular 
motion

– energy is transfer to gas molecules, they start to move 
about in random fashion  

– they collide with other molecules and transfer their 
energy to these molecules

– the process of collision repeats – energy is propagated

– macroscopic parameters                 are slightly varied by 
increased microscopic parameter – energy of molecule 

Speed of sound

64
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• parameters of fluid 
Speed of sound
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• parameters of fluid 
Speed of sound
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• parameters of fluid 
Speed of sound
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• parameters of fluid 
Speed of sound
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1. Fluid Flow and Thermodynamics

• parameters of fluid 
Speed of sound
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• parameters of fluid 
Speed of sound
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• parameters of fluid 
Speed of sound
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1. Fluid Flow and Thermodynamics

• parameters of fluid 
Speed of sound
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• parameters of fluid 
Speed of sound
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Gas Mm [g/mol]  [] a at 0°C [m/s]

Air 28.96 1.404 331

Hydrogen 2.016 1.407 1270

Xenon 131.3 1.667 170
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1. Fluid Flow and Thermodynamics

• Importance of isentropic flow:
– isentropic flow is adiabatic in which viscous losses are negligible

– real flows are not isentropic

Isentropic flow

76

the effects of viscosity and 
heat transfer are restricted to 
thin layers near the walls

major part of the flow can 
be assumed to be isentropic



Chemical Propulsion Systems
Space for Education, Education for Space

1. Fluid Flow and Thermodynamics

• Importance of isentropic flow:
– isentropic flow is adiabatic in which viscous losses are negligible

– real flows are not isentropic

Isentropic flow

77

the effects of viscosity and 
heat transfer are restricted to 
thin layers near the walls

major part of the flow can 
be assumed to be isentropic

many flows in engineering practice can be adequately modeled by 
assuming them to be isentropic and also steady-state and quasi-one 

dimensional flow
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• relationships
Isentropic flow
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• relationships
Isentropic flow
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• relationships
Isentropic flow
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• relationships
Isentropic flow
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• relationships
Isentropic flow

82

point 1

point 2

direction of 
isentropic
flow

adiabatic energy 
equation 1-2






























22

2

2
2

2

1
1

u
h

u
h

Tch p

1

 





 R
cp

1

 





 RT
h



Chemical Propulsion Systems
Space for Education, Education for Space
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• relationships
Isentropic flow
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1. Fluid Flow and Thermodynamics
Isentropic flow

84

point 1

point 2

direction of 
isentropic
flow

adiabatic energy 
equation 1-2






























22

2

2
2

2

1
1

u
h

u
h 
































 2121

2

2

2

2

2

1

2

1 uaua



1

2





a
h



Chemical Propulsion Systems
Space for Education, Education for Space

• relationships

1. Fluid Flow and Thermodynamics
Isentropic flow
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1. Fluid Flow and Thermodynamics
Isentropic flow
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1. Fluid Flow and Thermodynamics
Isentropic flow
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• magnitude of fractional pressure 
change induced by a given fractional
velocity change depends on square
of Mach number
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• magnitude of fractional 
temperature change induced by a 
given fractional velocity change
depends on square of Mach number
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• magnitude of fractional 
temperature change induced by a 
given fractional velocity change
depends on square of Mach number
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fractional propert. change induced by 
fractional velocity change of air [%] 

Mach num. density temp. pressure

0.1 1 1.4 0.4

0.33 10.9 15.2 4.4

0.4 16 22.4 6.4
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1.  subsonic flow:                                  10  M

increase in velocity            is 
associated with decrease in 
area                                  

du

dA

2.  supersonic flow:                                  1M

increase in velocity            is 
associated with increase in 
area                                  

du

dA
3.  sonic flow:                                  1M area reaches an 

extremum – minimum                                
0dA
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stagnation 
point

streamline

00 ,Tp

gas reservoir

back 
pressure Bp

throat

• stagnation parameters:

• nozzle area:
inlet area (location 0 m): 0.004 m2

throat area (loc. 0.05 m): 0.002 m2

exit area (loc. 0.2 m): 0.004 m2

• air: 

K5000 T

MPa10 p

exitinlet 

J/kgK 288R

4.1



Chemical Propulsion Systems
Space for Education, Education for Space

1. Fluid Flow and Thermodynamics

• variation of parameters in nozzle
Nozzle fluid flow

125

[m] x

[m] x

M
[-

]
A

[m
2
]

 
 1

1

2

2

2

* 2

1
1

1

21 


















 











 






M

MA

A



Chemical Propulsion Systems
Space for Education, Education for Space

1. Fluid Flow and Thermodynamics

• variation of parameters in nozzle
Nozzle fluid flow

126

[m] x

[m] x

M
[-

]
A

[m
2
]

[m] x

 
T

T
M 02

2

 1
1 





 
p

p
M 0

1
2

2

 1
1 







 








 


 
0

1

1

2

2

 1
1 







 




M

0/ pp

0/ 

0/TT



Chemical Propulsion Systems
Space for Education, Education for Space

1. Fluid Flow and Thermodynamics

• variation of parameters in nozzle
Nozzle fluid flow

127

[m] x

M
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]

[m] x0/ pp

0/ 

0/TT

pressure difference causes fluid flow

• no pressure difference – no fluid flow
• if pressure ratio pe/p0 is different   

from isentropic value, the flow will be 
different (inside or outside the nozzle)
• exit pressure for isentropic flow with 

supersonic speed is pe
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very low-speed subsonic flow, pB,1= pe,1

• pB,1 is reduce below p0
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flow moves faster through nozzle, still 
subsonic flow, mass flow increases, pB,2= pe,2

• pB,2 is reduce below pB,1
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• pB,3 is such, that it produces sonic flow in 
throat

only in throat is flow sonic, in other parts of 
nozzle is flow subsonic, mass flow increases and 
reaches max. value,  pB,2= pe,2
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in divergent nozzle flow is at first supersonic, 
than shock wave is formed and flow is subsonic, 
mass flow is constant – chocked flow,  pB,4= pe,4

• pB,4 is reduce below pB,3
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shock wave is moving toward the exit plane,  
pB,4= pe,4

• pB,5 is reduce below pB,4
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the flow is supersonic in whole nozzle except the 
exit plane,  pB,6= pe,6

• pB,6 is such, that shock wave is on the 
exit plane
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pressure difference causes fluid flow

[m] x

p
/p

0
[-

]

the flow is supersonic in whole nozzle except the 
exit plane,  pB,6= pe,6 

• pB,6 is such, that shock wave is on the 
exit plane

other reduction of back pressure pB:
• exit pressure is constant pe

• if                 shock waves moves outside nozzle
• if                  no shock waves are produced
• if                  expansion waves are formed 

outside  the nozzle 

eB pp 

eB pp 

eB pp 
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the flow is supersonic in whole nozzle except the 
exit plane,  pB,6= pe,6 

• pB,6 is such, that shock wave is on the 
exit plane

other reduction of back pressure pB:
• exit pressure is constant pe

• if                 shock waves moves outside nozzle
• if                  no shock waves are produced
• if                  expansion waves are formed 

outside  the nozzle 

eB pp 

eB pp 

eB pp 

over-expanded flow
(low altitudes)

eB pp 

under-expanded 
flow
(high altitudes)

eB pp 

source: NASA
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2. Chemical Rocket Propulsion

propellant

1 2 e

*

isobaric
heating in 
combustion 
chamber

isentropic
expansion
in C-D nozzleheat per unit mass Rq

Tchq pR 
First thermodynamic
law – isobaric heating:
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propellant
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*

isobaric
heating in 
combustion 
chamber

isentropic
expansion
in C-D nozzleheat per unit mass Rq

Tchq pR 
First thermodynamic
law – isobaric heating:

p

R
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q
TT  0102
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1 2 e

*

isobaric
heating in 
combustion 
chamber

isentropic
expansion
in C-D nozzle

ehh 002 
stagnation 
enthalpy:

isentropic expansion
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mass flow

continuity
equation:

*** uAm 
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2. Chemical Rocket Propulsion
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2. Chemical Rocket Propulsion
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2. Chemical Rocket Propulsion
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2. Chemical Rocket Propulsion
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2. Chemical Rocket Propulsion
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2. Chemical Rocket Propulsion
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2. Chemical Rocket Propulsion
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2. Chemical Rocket Propulsion
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• There are 2 main feed systems for liquid propellant:

pressurized systems

Feed System
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2. Chemical Rocket Propulsion

• They are usually used when:
• total impulse is small
• pressure in combustion chamber is 

small
• Disadvantages:

• walls of tanks are thicker – system 
is heavier

• Usage:
• control of attitude and change of 

orbit
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• There are 2 main feed systems for liquid propellant:

turbopump systems

Feed System

165

2. Chemical Rocket Propulsion

• They are usually used when:
• total impulse is large
• pressure in combustion chamber is 

large
• Positive characteristics of system:

• pressure in tanks is lower than 
pressure in tanks when gas 
pressure feed system is used so the 
thickness of walls of tank is smaller

• Usage:
• dominantly for boosters
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• turbopump systems – 3 basic cycles
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2. Chemical Rocket Propulsion

Gas generator cycle - open cycle

Description:
• It is the most common cycle 
• It is relatively simple cycle 
• The cycle efficiency is smaller than efficiency of 

closed cycle 
• Small part of the propellant is consumed in small 

combustion chamber for generating gas for a 
turbine, which drives the pump 
• Gas from turbine flows to separate nozzle or to 

the end part of the main nozzle, where it operates 
as cooler of nozzle
• Engines: F-1 (Saturn V) , 2 Vulcain (Ariane 5)
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2. Chemical Rocket Propulsion

Expander cycle - closed cycle 

Description:
• The fuel passed through the cooling jacket of 

nozzle where it picked up energy and the fuel 
works as coolant of nozzle
• The fuel is evaporated, heated, and then fed to 

low pressure-ratio turbines
• at the outlet of the turbine fuel enters the 

combustion chamber where it is mixed with an 
oxidizer 
• in that cycle all the fuel is burnt in combustion 

chamber and the efficiency of engine is increased 
• Engines: RL10 (the second stage of the Delta IV) , 

Vinci (ESA)
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2. Chemical Rocket Propulsion

Staged-combustion cycle - closed cycle

Description:
• The fuel passed through the cooling jacket of 

nozzle as in expander cycle 
• Then the fuel flows into the precombustor 

where all the fuel is burnt with a part of the 
oxidizer, forming a high-energy gas to drive
• The turbines that drive the pumps 

all the gas at the outlet of the turbine flows 
into the combustion chamber where is mixed 
with remaining oxidizer 
• pressure in combustion chamber: up to 40 MPa
• Engines: Space Shuttle Main Engine – SSME, 

RD-170 (Energija)
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• Static Performance

• Force-Free Motion

• Motion with Gravity

• Launch Flight Mechanics

3. Performance of Rocket Vehicle

169
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• Momentum equation – written for CV:

• simplifications:

– quasi-one dimensional flow 

– steady-state flow

Static Performance

170

3. Performance of Rocket Vehicle
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3. Performance of Rocket Vehicle
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3. Performance of Rocket Vehicle
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• Momentum equation – written for CV:
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3. Performance of Rocket Vehicle
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3. Performance of Rocket Vehicle





















































CV enters

momentum

 Rate

CV leaves

momentum

 Rate

 direction 

in CVin  gas

on  Forces

x

  eeaethrust umppAF 

 


















 




m

pp
Aum

ppAumF

ae
ee

aeeethrust






      

efthrust umF 

Thrust



Chemical Propulsion Systems
Space for Education, Education for Space

• Momentum equation – written for CV:
Static Performance

175

3. Performance of Rocket Vehicle

efthrust umF 

Thrust

Engine Thrust [MN]

F1 7.77 (vacuum)

Vulcain 2 1.35 

J2 1.03

NK33 1.51 
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3. Performance of Rocket Vehicle

efthrust umF 

Thrust

tFI thrustt  

Total impulse
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3. Performance of Rocket Vehicle

efthrust umF 

Thrust

tFI thrustt  

Total impulse

gugmum

gmFmgII

efef

thrustts

//

//









Specific impulse
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Static Performance
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3. Performance of Rocket Vehicle

efthrust umF 

Thrust

tFI thrustt  

Total impulse

gugmum

gmFmgII

efef

thrustts

//

//









Specific impulsePropellant Specific impulse Is [s]

cold gas 50

Monopropellant 
hydrazine

230

LOX/LH2 455

Ion propulsion >3000
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3. Performance of Rocket Vehicle

time t time t+dt

mass dm

mass Rm

Rv


RR vdv


ambient
pressure ap only ambient 

pressure 
is considered

exit pressure
of nozzle ep

eu


eu


mass dm

mass Rm

Momentum:   RR vdmm


     eRRRR uvdmvdvm


 

Change of  momentum in      
:

eRR udmvdm


 dt
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• Force-free motion          absence of external forces
Force-Free Motion
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3. Performance of Rocket Vehicle

time t time t+dt

mass dm

mass Rm

Rv


RR vdv


ambient
pressure ap only ambient 

pressure 
is considered

exit pressure
of nozzle ep

eu


eu


mass dm

mass Rm

Pressure force:   Reae iApp


   Reae iApp




Total impulse in     :dt   dtiApp Reae



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• Force-free motion          absence of external forces
Force-Free Motion

181

3. Performance of Rocket Vehicle

time t time t+dt

mass dm

mass Rm

Rv


RR vdv


ambient
pressure ap only ambient 

pressure 
is considered

exit pressure
of nozzle ep

eu


eu


mass dm

mass Rm

Momentum equation:   dtiAppudmvdm ReaeeRR


 

Momentum equation in     :Ri


  dtAppdmudvm eaeeRR  
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3. Performance of Rocket Vehicle

time t

mass dm

mass Rm

Rv
ambient

pressure ap

exit pressure
of nozzle ep

eu


Momentum equation in     :Ri


  dtAppdmudvm eaeeRR  

dtmdm 

thrust 

thrustF

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3. Performance of Rocket Vehicle

time t

mass dm

mass Rm

Rv
ambient

pressure ap

exit pressure
of nozzle ep

eu


Momentum equation in     :Ri


  dtAppdmudvm eaeeRR  

dtmdm 

  dtAppumdvm eaeeRR   

thrust 

thrustF

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3. Performance of Rocket Vehicle

time t

mass dm

mass Rm

Rv
ambient

pressure ap

exit pressure
of nozzle ep

eu


Momentum equation in     :Ri


  dtAppdmudvm eaeeRR  

dtmdm 
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• Force-free motion          absence of external forces
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3. Performance of Rocket Vehicle

time t

mass dm

mass Rm

Rv
ambient

pressure ap

exit pressure
of nozzle ep

eu


Momentum equation in     :Ri


  dtAppdmudvm eaeeRR  

dtmdm 

  dtAppumdvm eaeeRR   

dtumdvm efRR
 

thrust
R

R F
dt

vd
m



 thrust
R

R F
dt

dv
m  

thrust 

thrustF

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3. Performance of Rocket Vehicle

time t

mass dm

mass Rm

Rv
ambient

pressure ap

exit pressure
of nozzle ep

eu


dtumdvm efRR
 

m
dt

dmR  

ef

R

R
R u

m

dm
dv  

thrust 

thrustF

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3. Performance of Rocket Vehicle

time t

mass dm

mass Rm

Rv
ambient

pressure ap

exit pressure
of nozzle ep

eu


thrust 

thrustF

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• Motion with gravity          vertical motion in 
gravity field

Motion with Gravity
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3. Performance of Rocket Vehicle

Rv


thrustF


eu


m

Rm

gmR
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gmu
dt

dm

dt

vd
m Ref

RR
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m Ref

RR
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• Motion with gravity          vertical motion in 
gravity field

Motion with Gravity
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3. Performance of Rocket Vehicle
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• Motion with gravity          vertical motion in 
gravity field

Motion with Gravity

190

3. Performance of Rocket Vehicle
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3. Performance of Rocket Vehicle

trajectory 
of CM



local 
horizont

Rv




eu

ep

ap

Rm

The flight of rocket has 2 
main phases:
1. powered phase
2. unpowered phase

Powered phase:
• trajectory of vehicle from launch pad to 

burnout point
• during the phase, guidance system 

control the trajectory – vehicle at 
burnout point should have prescribed
position and velocity Simplif.:

• all forces act on the same plane
• Earth is inertial frame of reference

x
y
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3. Performance of Rocket Vehicle

trajectory 
of CM



local 
horizont

Rv




eu

ep

ap

Rm
flight path angle – angle between 
local horizont and velocity vector

angle of attack

Simplif.:
• all forces act on the same plane
• Earth is inertial frame of reference

x
y
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3. Performance of Rocket Vehicle

trajectory 
of CM



local 
horizont

Rv




eu

ep

gmR



ap

Rm

Three forces act on rocket at each 
instant:
1. gravitational force – applied at 

the CM gmR



Simplif.:
• all forces act on the same plane
• Earth is inertial frame of reference

x
y

it is function of vertical location 
of rocket 
mass of rocket is function of 
propellant mass flow 

equation of propellant mass flow
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3. Performance of Rocket Vehicle

trajectory 
of CM


Rv




eu


ap

ep
gmR



LF


DF


Rm

Three forces act on rocket at each 
instant:
1. gravitational force – applied at 

the CM

2. aerodynamic force – applied at 
aerodynamic center and can 
be decomposed into: 
- drag force 
- lift force

gmR



DF


LF


Simplif.:
• all forces act on the same plane
• Earth is inertial frame of reference

x
y they are function of vertical 

location and attitude of rocket 

local 
horizont
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3. Performance of Rocket Vehicle

trajectory 
of CM


Rv




eu


ap

ep
gmR



LF


DF


Rm


Three forces act on rocket at each 
instant:
1. gravitational force – applied at 

the CM

2. aerodynamic force – applied at 
aerodynamic center and can 
be decomposed into: 
- drag force 
- lift force

3. thrust force 

gmR



DF


LF


thrustF


thrustF


Simplif.:
• all forces act on the same plane
• Earth is inertial frame of reference

x
y

magnitude and direction can be 
controlled

local 
horizont
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3. Performance of Rocket Vehicle

trajectory 
of CM


Rv




eu


ap

ep
gmR



LF


DF


Rm

Motion of vehicle in 2D:
• translation motion of Center of Mass
• relative rotation motion around the CM

Three forces act on rocket at each 
instant:
1. gravitational force – applied at 

the CM

2. aerodynamic force – applied at 
aerodynamic center and can 
be decomposed into: 
- drag force 
- lift force

3. thrust force 

gmR



DF


LF


thrustF



thrustF


Simplif.:
• all forces act on the same plane
• Earth is inertial frame of reference

x
y

local 
horizont
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3. Performance of Rocket Vehicle

trajectory 
of CM


Rv




eu


ap

ep
gmR



LF


DF


Rm

thrustF
 

Three forces act on rocket at each 
instant:
1. gravitational force – applied at 

the CM

2. aerodynamic force – applied at 
aerodynamic center and can 
be decomposed into: 
- drag force 
- lift force

3. thrust force 

gmR



DF


LF


thrustF


 




i

FiR M
dt

d
I

2

2

 
x

y
dynamic equations:
relative rotation motion 
around the CM

local 
horizont
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3. Performance of Rocket Vehicle

trajectory 
of CM


Rv




eu


ap

ep
gmR



LF


DF


Rm

thrustF
 

Three forces act on rocket at each 
instant:
1. gravitational force – applied at 

the CM

2. aerodynamic force – applied at 
aerodynamic center and can 
be decomposed into: 
- drag force 
- lift force

3. thrust force 

gmR



DF


LF


thrustF


LDRthrust
R

R FFgmF
dt

vd
m



 
dynamic equations:
translation motion 
of the CM

x
y

local 
horizont
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3. Performance of Rocket Vehicle

trajectory 
of CM


Rv




eu


ap

ep
gmR



LF


DF


Rm

thrustF
 

  DRthrust
R

R FgmF
dt

dv
m   sincos 

  LRthrustRR FgmF
dt

d
vm  


cossin 

tangent and normal decomposition

x
y

LDRthrust
R

R FFgmF
dt

vd
m



 
dynamic equations:
translation motion 
of the CM

local 
horizont
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3. Performance of Rocket Vehicle

trajectory 
of CM


Rv




eu


ap

ep
gmR



LF


DF


Rm

thrustF
 


t

R dtvx

0

 cos

x
y

kinematic equations:
vertical and horizontal
distance

t

R dtvy

0

 sin

Equations of rocket motion:
• dynamic equations
• kinematic equations
• equation of propellant mass flow

Numerical solution of system of ODE

local 
horizont
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3. Performance of Rocket Vehicle

trajectory 
of CM


Rv




eu


ap

ep
gmR



LF


DF


Rm

thrustF
 

x
y

Gravity turn:
• gravity turn trajectory – change of 

flight angle due to gravity
• only thrust and gravity is considered 
• angle of attack is zero
• thrust is in axis of rocket

sin gmF
dt

dv
m Rthrust

R
R 




cos g
dt

d
vR 

local 
horizont
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3. Performance of Rocket Vehicle

trajectory 
of CM


Rv




eu


ap

ep
gmR



LF


DF


Rm

thrustF
 

x
y

]km[ x

Gravity turn:
• initial mass 90 t, propellant is 

80% of mass with flow 250 kg/s
effective velocity 4000 m/s
• in altitude 1 km, flight angle is 
changed to 89.85°

sin gmF
dt

dv
m Rthrust

R
R 




cos g
dt

d
vR 

cosRv
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

sinRv
dt
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

local 
horizont
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